
The Tanl Named Entity Recognizer at Evalita 2009

Giuseppe Attardi
1
, Stefano Dei Rossi

1
, Felice Dell‟Orletta

2
, and Eva Maria Vecchi

2

1 Dipartimento di Informatica, Università di Pisa, largo B. Pontecorvo 3, I-56127 Pisa, Italy
2 ILC-CNR, via G. Moruzzi 1, I-56124 Pisa, Italy

{attardi, deirossi}@di.unipi.it, {felice.dellorletta,evamaria.vecchi}@ilc.cnr.it

Abstract. We describe the tagger present in the Tanl toolkit, which is a flexible

and customizable tool for use in various tagging tasks, including POS tagging

and SuperSense tagging. The tagger uses a variety of features, both local and

global, which can be specified in a configuration file. The tagger is based on a

Maximum Entropy classifier and uses dynamic programming to select accurate

sequences of tags. We applied it to the NER tagging task in Evalita 2009,

customizing the set of features to use and generating a set of dictionaries from

the training corpus, that also provide additional features. The final accuracy is

further improved by applying simple symbolic rules.

Keywords: natural language processing, named entity tagger, chunker.

1 Architecture

The Tanl [1] tagger is a generic, customizable text chunker, which can be applied to

tasks such as POS tagging, Super Sense tagging and Named Entity recognition. The

chunker uses a Maximum Entropy classifier for learning how to chunk texts.

Maximum Entropy is a more efficient technique than SVM, and by complementing it

with dynamic programming it can achieve similar levels of accuracy.

The tagger has an option to transforms the IOB annotations into a more refined set

of tags: the B tag is replaced by U when an entity consisting of a single token; the last

I tag of an entity of more than one token is replaced by E. Experiments have shown

that for NER the refinement is effective, helping the classifier to better separate the

data.

The tagger scans the input from left to right and extracts features, representing the

current state, that are fed to a Maximum Entropy classifier to learn a model for

tagging. Feature extraction is accomplished by an object of class

FeatureExtractor that can be specialized for the purposes of different chinking

tasks. During tagging, the same feature extractor is applied and the classifier

computes a probability distribution for the tags to assign to the current token.

Since the Maximum Entropy classifiers assigns tags to each token independently, it

may produce inadmissible sequences of tags. Hence a dynamic programming

technique is applied to select correct sequences. A probability is assigned to a

sequence of tags t1, t2, …, tn for sentence s, based on the probability of transition

between two consecutive tags P(ti+1 | ti), and the probability of a tag P(ti | s), obtained

from the probability distribution computed by Maximum Entropy:

  



n

i

iiin ttPstPtttP
1

121))(),...,,(

In principle the algorithm should compute the sequence with maximum probability.

We use instead a dynamic programming solution which operates on a window of size

w = 5, long enough for most NEs.

For each position n, we compute the best probability PB(tn) considering the n-

grams of length k < w preceding tn:

 PB(tn) = maxk PB(tn-k-1) ... PB(tn-1)

A baseline is computed first, assuming that the k-gram is made all of „O‟ tags:

 PBO(tn) = maxk PB(tn-k-1) P(tn-k = O) ... P(tn-1 = O)

Similarly for each class C we compute:

 PBC(tn) = maxk PB(tn-k-1) P(tn-k = C) ... P(tn-1 = C)

and finally

 PB(tn) = max(PBO(tn), maxC PBC(tn)

2 Feature Extractor

The modular architecture of the chunker involves the use of an abstract class called

FeatureExtractor for extracting features during training and analysis. The class

NerFeatureExtractor is a specialization of the abstract class designed for Named

Entity tagging. It extracts a basic set of features from the current and surrounding

tokens. More specific features, to extract for a given task or for a given language, can

be specified through a configuration file.

2.1 Feature Specification

There are two mechanisms to specify the additional features to extract: as attributes of

the tokens or as token features expressed by a regular expression.

An example of an attribute feature is the following:

POSTAG -1 0

which requests to use as features the POS tag of the previous (-1) and current (0)

token.

Token features can be expressed with regular expressions, for instance, in:

MorphFeature FORM ^\p{Lu} -1 +1

MorphFeature FORM ^\p{Lu}*$ 0

The first line indicates to use as features the property of starting with an uppercase

letter (Unicode property Lu) for the previous (-1) and next token (+1); the second line

indicates the feature representing that the current token consists of all upper case

letters.

2.2 Dictionaries

Dictionaries are used to group tokens with specific properties. They associate an

entity type to tokens. For NER, several dictionaries were created automatically by

preprocessing the training data, according to the following criteria:

Dictionary. Consists in all words annotated as entities that appear more than 5 times

in the training corpus.

Prefix. Three letter prefixes of entity words whose frequency is > 9 and whose 2 >

3.84.

Suffix. Similarly for suffixes.

LastWords. Words occurring as last in a complex entity more than 9 times and whose

2 > 3.84.

FirstWords. Similarly for words appearing as first.

LowerIn. Lowercase words occurring inside an entity.

Bigrams. All bigrams that precede an entity and occur more than 5 times, whose

probability is > 0.5 and also > the probability of its first word.

Frequent Words. Words that occur more than 5 times in the training corpus.

Designators. Words that precede an entity.

2.3 Standard Features

The standard NerFeatureExtractor extracts two types of features: local and

global. Local features represent properties of tokens close to the current token.

Global features are properties valid at the document level. For instance, if a word

in a document had been previously annotated with a certain tag, then it is likely that

other occurrences of the same word should be tagged similarly. Global features

represent these properties. They are particularly useful in cases where the word

context is ambiguous but the word appeared previously in a simpler context.

2.4 Morphological Features

Local features are extracted from the analysis of the current word and the context in

which the word appears. There are two kinds of local features, those extracted from

the current word and those extracted from its surrounding words.

2.4.1 Features of Current Word

The following features of the current word are extracted by the

NerFeatureExtractor:

first word of sentence and capitalized; first word of sentence and not capitalized;

two parts joined by a hyphen.

2.4.2 Dictionary Features

The following dictionary features are extracted:

3-letter suffix present in the suffix dictionary; similarly for 3-letter prefix;

presence in dictionary LastWords; presence in dictionary FirstWords; not present

in the Frequent Words dictionary; lowercase word present in dictionary LowerIn.

2.4.3 Features from Surrounding Words

The following features of the surrounding words are extracted:

both previous, current and following words are capitalized; both current and

following words are capitalized; both current and previous words are capitalized;

word is in a sequence within quotes; the two previous words are in the bigrams

dictionary for a certain type.

2.5 Global Features

The NerFeatureExtractor adds a global feature, whenever a previous occurrence

of the current word:

was preceded by a word designator; was preceded by a bigram in the bigram

dictionary; was present in the dictionary FirstWords; was present in the dictionary

of last words; was in capitalized without being at the start of a sentence; was an

acronym.

3 Experiments

A remarkable aspect of our NER is that it can do without POS features: the

morphological features it computes are sufficient to categorize tokens according to

their function in a sentence.

The following features were specified in the configuration file for the NER task:

the previous word is capitalized; the following word is capitalized; the current

word is in upper case; the current word is in mixed case; the current word is a

single uppercase character; the current word is a uppercase character and a dot; the

current word contains digits; the current word is two digits; the current word is

four digits; the current word is made of digits and „/‟; the current word contains $;

the current word contains %; the current word contains „; the current word is made

of digits and dots.

The NER using features similar to these had been tested on the CoNLL 2003

corpus and test set, achieving state of the art scores: 97.85% accuracy, 90.75%

precision, 87.97% recall, 89.34 FB1.

3.1 Post Processing Rules

An error analysis of the NER output on a development set, obtained from 10% of the

training corpus, revealed many mistakes, particularly for Location entities. To correct

the most obvious cases, we introduced a couple of post processing rules. A common

case of errors is tagging as Person a street name which includes a proper name, e.g.

“via Vittorio Veneto”. The tagger annotates “Vittorio Veneto” as a Person. The post

processing Rule 1 corrects these mistakes.

Let‟s call NP constituent a word whose POS tag is either an adjective, number,

noun, or foreign word. The following post processing rules are applied to the output

of the tagger:

Rule 1 If a token is not annotated as an entity, its POS is noun and it is associated to

Location in the dictionary FirstWords, the following token is capitalized and

annotated as B-LOC, or a capitalized NP constituent or a number followed

by a capitalized NP constituent, then annotate the current token as B-LOC,

and the following token as I-LOC.

Rule 2 If a token is not annotated as an entity, its POS is number and the next token

is annotated as Location, then tag the current token as Location as well.

Applying these rules, the accuracy for Locations improved by over 5 in FB1 and

consequently also the overall accuracy of the tagger improved.

4 Results

The official results are quite poor due to a wrong submission. We report in the

following Table unofficial results, before and after the application of the above post

processing rules.

 Accuracy Precision Recall FB1

Before 96.99% 78.41% 68.22% 72.96

PostProc 97.02% 78.57% 68.45% 73.16

5 Conclusions

The NER tagger that we developed has some interesting features: it does not use POS

tagging information nor external resources. In this configuration the NER tagger

achieved state of the art accuracy on the official English benchmark from CoNLL

2003.

When applied to the Evalita 2009 data sets, with minor configuration changes for

taking into account differences in word order between English and Italian, the

accuracy dropped significantly, despite the fact that both benchmarks have

approximately the same size and the tagger extracts a similar number of training

features.

A SuperSense Tagger [3] based on the same tagger also achieved excellent

accuracy. Further investigation is required to explain such unexpected drop in

performance in the Italian NER task.

Acknowledgments. This work has been supported in part by a grant from Fondazione

Cassa di Risparmio di Pisa.

References

1. Attardi, G., et al.: Tanl (Text Analytics and Natural Language Processing): Analisi di Testi

per il Semantic Web e il Question Answering, http://medialab.di.unipi.it/wiki/SemaWiki

2. Chieu, H.L., Ng, H.T.: Named Entity Recognition with a Maximum Entropy Approach. In:

Proceedings of CoNLL-2003, pp. 160--163. Edmonton, Canada (2003)

3. Dei Rossi, S.: SuperSense Tagging. Master Thesis, Dipartimento di Informatica, Università

di Pisa (2009)

